Neural Network Based Classifier (Pattern recognition) for Classification of Iris Data Set

نویسندگان

  • Labhya Sharma
  • Utsav Sharma
  • Zakir Hussain
چکیده

In this paper we are working on the Neural Network based classifier that solves the classification problem. The paper describes the multilayer perception approach to describe the neural network architecture. For this classifier we use the Fisher’s Iris Database (Fisher, 1936) available in MATLAB and on the Internet. This database is the preprocessed and is the best database in the pattern recognition literature. It contains 3 different classes of 50 objects each, where each class is an iris plant. Classes are named as Iris Setosa, Iris Versicolour, Iris Virginica. We finally describe the result of this classifier. Keywords—Artificial Neural Network, Pattern recognition, Multilayer Perceptron, IRIS Database, Confusion Matrix.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten

Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...

متن کامل

Persian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network

Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...

متن کامل

Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods

Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...

متن کامل

Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods

Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...

متن کامل

Fuzzy Hyperline Segment Neural Network Pattern Classifier with Different Distance Metrics

The Fuzzy Hyperline Segment Neural Network (FHLSNN) pattern classifier utilizes fuzzy set as pattern classes in which each fuzzy set is a union of fuzzy set hyperline segments. The Euclidean distance metric is used to compute the distances to decide the degree of membership function. In this paper, the use of other various distance metrics such as Manhattan, Squared Euclidean, Canberra and Cheb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014